FARM VIABILITY COHORT: TRAIN THE TRAINER

NOVEMBER 2022
REBECCA FRIMMER

KITCHENTABLECONSULTANTS.COM

FARM VIABILITY TRAINING

MODULE 4 KTC TOOLBOX: COST BY CROP

- Price vs Cost by Product

AGENDA

- Margins Example
- Costing Templates
- Key Considerations

How should we approach price vs cost?

Farm finances are complicated.
After costs of goods, we have a pile of other expenses.
Don't forget about your indirect costs!
Start with the forecasts and work backwards.
LABOR | GENERAL + ADMINISTRATIVE | FIXED | OPERATION

WHY WHOLESALE?

Diversify and reduce risk
Really good at producing a few, particular products

Justify equipment purchase for a particular opportunity

Strategy for unused land
Aware of possible wholesale customers on current travel route

Starting up a wholesale enterprise without understanding product cost is dangerous.

At a lower price point than direct-to-consumer, the farmer could unknowingly be losing money \& reducing profits!

COST VS PRICE BY PRODUCT

Understanding Margin

These suggestions are meant to be used as general guidelines, and the user should verify their own numbers and assumptions.

Gross Margin is the \% of income you retain after paying

for very direct costs (For this

 model: COGS and Labor).Sales Income - Costs of Goods Sold = Gross Profit (\$)
(Gross Profit/Sales) $\times 100=$ Gross Margin (\%)

What should my margin goal be?

How does that differ by sales channel? For what reason?

COST VS PRICE BY PRODUCT

Wholesale vs Retail

- If you set a wholesale margin goal of $20-25 \%$, all of your other expenses need to equal less than that \% in order to produce a net profit.
- In wholesale, your expenses of selling should be much lower - staff time and materials.
- Retail margins need to be higher to cover that increased effort in sales and marketing.
- Blends of wholesale and retail operations mean we need to zoom out and look at big picture.

MARGINS BY COST

- Let's say Mary sells potatoes at market for $\$ 2$ per pound.
- Wholesale price is $\$ 25$ for a 50lb. bag.
- That's $\$ 2$ per pound vs. $\$ 0.50$ per pound.
- Mary needs to drive a high enough margin to make a profit.
- Unless her cost is less than $\$ 0.40$ per pound, she does not meet her goal.

Product Cost at \$0.40/lb

Product Cost at $\$ 0.50 / \mathrm{lb}$

THE PURPOSE OF THIS TOOL

Need an understanding of gross profitability on pricing.

Especially when setting a price for wholesale or subscriptions.

- Transparency on which parts of the enterprise are the biggest impacts on costs, and how that information helps you evaluate potential opportunities to sell more product.
- Begin a conversation about how we can manage costs and which costs we can most control and change.
- Know right away if you want to further engage a potential buyer once price has been discussed.

SETTING UP THE MODEL

Start with a sales projection
for this new
enterprise and make sure that it generates profit.

Let's dig in and demothe spreadsheets.

PROTEINS COSTING

Cost Planning
 Considerations

- Taking a magnifying glass to each part of the process
- where can we make tweaks in cost inputs?
- Impact of processing on the final cost
- Use the costing tool to test pricing and variations on processing order

GRAINS COSTING

Cost Planning
 Considerations

- How many acres?
- Is this a plot grains only or rotated?
- Custom hire vs. equipment purchase and return on investment

Food vs Feed

- Learning curve on quality control
- Cleaning and storage
- Price vs effort for food vs feed grade
- Disease related crop loss
- Food grade crops are very challenging

PRODUCE costing

Cost Planning
 Considerations

- Start with a sales projection
- Helps to know your ballpark yields and detailed COGS
- Time tracking makes the costing model more accurate
- Having your financials in order makes it easier to know what to set as your goal margin

MARGINS AND COSTS Critical Point for Trainers -

- Farmers usually chase sales. Sometimes they are losing money on what they are selling.
- At a smaller scale, they need to understand the value of their time, and the tradeoffs.
- Biggest opportunities for learning:
- Profit over volume!
- The lessons on price and margins are highly applicable to value added products, too. Sometimes spending more to process a product is a mistake.

What if your product isn't profitable enough?

TWEAKING YOUR MODEL

- Create a new tab in the sheet or "save as"
- Try again with different data
- Equipment purchase opportunity?

PRODUCE COSTING SAMPLE SLIDES

SETTING UP Crop, Bed Size, Yield,

THE MODEL Price + Margin

Step 4: Enter your cost per hour (or an average cost) for labor. Then enter your rate for taxes and benefits.

Field Labor: cost per hour
Taxes and Fringe Benefits
Effective labor costs per hour

$\$ 12$				
15%				
$\$ 14$				

Step 5: Enter your costs of direct inputs per bed (rememeber your bed length and rows entered in step 1).
List your costs of seeds or starts, soil ammendments, or other inputs. Use scratch paper as needed or create a new tab to organize your "other" items.
If you don't know your plant start costs in your greenhouse, use the "Starts" Tab to calculate a cost.

Seeds or Starts	$\$ 18$
Soil Amendments	$\$ 0$
Other 1	$\$ 20$
Other 2	$\$ 0$
SUBTOTAL	$\$ 38$

Note your labor budget: This is the (projected revenue - direct costs - margin goal) = your remaining budget for labor

Based on a goal of the margin you set, after direct costs.

SETTING UP THE MODEL

Step 6: Enter your labor plan PER BED, using the same bed size and rows entered in step 1. You are making estimates unless you have already collected data. Over the course of the season, you should refer to your estimates and aim to meet your plan.

Over the lifespan of this crop

A "feasible" budget for your wholesale price is less than or equal to your labor budaet inhours per bed.

		,		
Activity	\# of passes per crop (must be at least 1 to calculate)	Time (in minutes) per pass	Notes:	
Bed preparation	2	20		
Seeding or transplanting	1	30		
Thinning	0	0		
Cultivating	3	15		
Hand Weeding	2	30		
Pruning	0	0		
Trellising/Tying	0	0		
Irrigation	0	0		
Weather protection	0	0		
Fertilizing (side dress or foliar)	0	0		
Pest control (scouting, application)	0	0		
Harvesting to wash shed	1	120		
Clearing/Plowing under	0	0		
Washing/Packing	1	120		
Other	0			
Other	0			
SUBTOTAL: LABOR TIME in MINUTES	10	415		
LABOR HOURS		6.9		

You must use a \# of 1 or greater under passes to calculate. We realize that washing isn't a pass down the row, but use 1 to complete the calculation.

FORECASTING LABOR + TIME: CARROTS

Starts Cost Worksheet: crop costing input
for wholesale readiness
These sheets are meant to be used as general guidelines, and the user should verify their own numbers and assumptions.

Step 1: Fill in crop name

Step 2: Fill in tray information

If your trays don't usually 100\% germinate, enter a number of useable plants instead of tray size.

TRAYS				
Tray Size or Useable Plants per Tray				
	\# of uses per tray	47		
	Cost of tray	3		

Step 3: Fill in the cost of seed per tray, potting soil, other products. Be sure to enter costs by TRAY.
Potting soil per tray can be calculated by measuring the soil required and comparing to your costs of bulk soil.

PRODUCTS		
		Seed (tray)
	Potting soil	$\$ 0.50$
	Other products	$\$ 0.02$
	Tag	$\$ 0.14$

SETTING UP

THE MODEL

Direct

Inputs:

Transplants

Step 4: Calcuate your Greenhouse "Rent" per tray.
Total Greenhouse costs include maintenance, utilities and other direct costs of running the GH. Use your planting plan to enter a number of trays run through the GH per YEAR.

GREENHOUSE COST
Total Greenhouse costs per year 7500 \# of trays per year
Greenhouse "rent" per tray

Step 5: Calculate your labor per tray. All inputs are in reference to the crop in step 1.

FILLING \& SEEDING LABOR PER TRAY	
\# of trays filled per hour	40
\# of trays seeded per hour	15
Greenhouse Labor rate	\$14.00
Taxes and Fringe Benefits	15\%
Tray filling labor	\$0.40
Seeding labor	\$1.07

Step 6: Calculate your general labor per tray. All inputs are in reference to the ENTIRE greenhouse starts season.

GENERAL GREENHOUSE LABOR
Hours per week of general labor in GH \# of weeks of labor in GH for starts season
Total cost of general labor in GH for starts

Step 7: Review your results

SUBTOTALS

Tray Cost per plant	$\$ 0.01$
Product Cost per plant	$\$ 0.0153$
Rent per plant	$\$ 0.05$
Labor per plant	$\$ 0.04$
Cost of Starts, per plant	$\$ 0.11$

Step 7: Review your crop cost analysis below. Here you can experiment with the projected return on the number of beds. Fill in the peach cell below for \# of beds.

Summary Crop Cost Analysis

\# of beds in crop plan
Projected total yield
Income
Direct Costs
Labor
Margin
Margin \%
Cost per unit:
\square
\square

Compare this to your desired margin and decide if it's worth the effort

The time you projected multiplied by your effective labor cost multiplied by \# of beds

SUMMARY COST ANALYSIS

Step 8: Use this section to experiment with a variable such as equipment purchase. This shows you a different scenario's outcome. Best practice is to create a new tab and copy this entire sheet - then experiment with the opportunity in a new tab to protect your data. Compare your results between tabs to see if you want to pursue the opportunity!
Fill in the peach cell below for the name of the opportunity, and the cost for the growing cycle.
Results will show you the effective impact on your margin for the period of time that you incur the cost of the opportunity.
Be sure to adjust your labor or input numbers above to show the impact of the purchase.

These sheets are meant to be used as, seneral guidelines, and the user should verify their own numbers and assumptions.

Impact on margin
during debt payment

Remember that labor could be reduced greatly by this purchase

OPPORTUNITY ASSESSMENT

Let's say we want to reduce labor in the washing stage and spend $\$ 4000$ on a root washer. We borrow the money from a family member and are paying it back over 2 years with 5% interest. ($\$ 175.49 /$ month or $\$ 2105.88 /$ year)

How many crops will I use this for? Create a \% use plan to assign cost.

Ex: 25% carrots ($\$ 526 /$ year), 25% beets ($\$ 526 /$ year), 50% potatoes (\$1054/year).

Project how much time you will save (ex: 50% of washing time).
Consider that crop yield over the whole year (\# of beds).
Re-run the model. Put your repayment cost in "other" under summary analysis. Play with \# of beds.

ROOT WASHER CASE STUDY

ROOT WASHER CASE STUDY

Summary Crop Cost Analysis		
Analysis is per bed (see row 9 above) - enter \# of beds below		
\# of beds in crop plan	5	
Projected total yield	2000	pounds
Income	\$1,200	
Direct Costs	\$190	
Labor	\$442.75	
Other Costs	\$526.00	root washer payment
Other Costs		item
Margin	\$41.25	
Margin \%	3\%	-

Margin reduced for 2 years until paid off.

Summary Crop Cost Analysis			
Analysis is per bed (see row 9 above)	enter \# of beds below		
\# of beds in crop plan	15		
Projected total yield	6000	pounds	
Income	$\$ 3,600$		
Direct Costs	$\$ 570$		
Labor	$\$ 1,328.25$		
Other Costs	$\$ 526.00$	root washer payment	
Other Costs			
Margin	item		
Margin $\%$	$\mathbf{\$ 1 , 1 7 5 . 7 5}$		

ROOT WASHER CASE STUDY

CROP COST MODEL
 Critical Point for Trainers -

- This is a FORECASTING tool. There are lots of other tools out there if you are collecting data for a season or year.
- This tool is meant to help gut check pricing and inputs before the harvest - farmers need to know how to sell what they're growing before they plant.
- Biggest opportunities for learning:
- Getting comfortable with forecasting and educated guessing.
- Getting comfortable with raising prices when needed.

Let's work in small groups to try out our costing tools!

THANKYOU

QUESTIONS?

REBECCA B. FRIMMER
REBECCA@KITCHENTABLECONSULTANTS.COM
703.593.5420

